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governing limit state for CFST members. For example, in 
the 2016 AISC Specification for Structural Steel Buildings 
(AISC, 2016b), hereafter referred to as the AISC Specifica-
tion, the shear strength of composite concrete-filled tubes is 
specified to be either that of the steel section alone or that of 
the concrete section alone, presumably on the assumption 
that there exist few instances where a shear strength greater 
than this is necessary.

However, in some instances, more accurate prediction of 
this shear strength is desirable or needed. For example, this 
would be the case at the panel-zone locations of CFST col-
umns in a composite moment frame (Fischer and Varma, 
2014), or in CFST drilled shafts spanning across a thin, 
liquefiable soil layer located between two stiff layers dur-
ing lateral spreading. In both of these cases, the CFST is 
subjected to double curvature bending over short lengths 
and subject to high resulting shear forces. In these cases, 
the shear strength of the CFST can become a significant 
consideration in its design.

It is important for design purposes to understand the 
physical behavior of composite CFST subjected to shear 
and to develop design equations that capture the respec-
tive contribution of the steel tube and concrete infill of the 
CFST to its total shear strength (contribution of internal 
reinforcement is not considered here for reasons described 
later). Design equations that are anchored in the mechan-
ics of structural behavior provide more confidence in the 
design. For example, overestimating the strength of one 
component could result in an unexpected failure should that 
component become dominant in providing the total shear 
strength of that member.

INTRODUCTION AND BACKGROUND

Concrete-filled steel tubes (CFST) have a demonstrated 
ability to provide strength and ductility, which has 

made them desirable for both seismic and non-seismic 
applications (Bruneau and Marson, 2004; Hajjar, 2000; 
Hajjar et al., 2013; Han and Yang, 2005; Lai et al., 2017). 
Much research has demonstrated that these members can 
develop their plastic flexural strength (e.g., Bruneau and 
Marson, 2004; Lai et al., 2014; Leon et al., 2007; Roeder 
et al., 2010; Varma et al., 2002) and equations in design 
specifications typically account for full development of the 
plastic flexural strength of such members under combined 
bending and axial load.

Considerably less knowledge exists on the shear strength 
of such members. This may be attributable to challenges in 
experimentally developing the full shear strength of large 
concrete-filled tubes, and to the fact that shear is rarely a 
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CIRCULAR CONCRETE-FILLED STEEL TUBES

The work presented in this section (1) summarizes recent 
research on the shear strength of circular concrete-filled 
members that illustrate the relative contributions of steel 
and concrete to the total shear strength and the contribution 
of a diagonal compression concrete strut to that strength 
(Kenarangi and Bruneau, 2020a, 2020b), (2) presents pro-
posed (and calibrated) simplified design equations to sim-
plify the more complex mechanics-based shear strength 
equation previously developed for composite CFST mem-
bers (Kenarangi and Bruneau, 2020b), and (3)  compares 
experimental results against the strength predicted by the 
proposed simplified equations.

2016 AISC Specification Shear Strength of 
Circular CFST

The shear strength of circular filled composite members 
given by the 2016 AISC Specification Section I4, is based 
on (1)  the shear strength of the steel tube alone, (2)  the 
available shear strength of the reinforced concrete portion 
alone, or (3)  the shear strength of the steel tube plus the 
shear strength of the reinforcing steel.

Using this approach, for case 1, the shear strength of the 
circular steel tube alone using AISC Specification Equa-
tion G5-1 is:

 Vn(AISC) = 0.5Fcr Ag (1)

where Vn(AISC) is the nominal shear strength of a circular 
steel tube and Fcr is the critical shear buckling stress taken 
as the larger of AISC Specification Equations G5-2a or 
G5-2b:
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where
Ag = gross area of the steel tube cross section, in.2

D = outside diameter of the steel tube, in.

Es = modulus of elasticity of the steel, ksi

Fy = specified minimum yield stress of the steel tube, ksi

Lv =  distance between points of maximum and zero 
shear, in.

t = design wall thickness, in.

Although not explicitly specified in AISC Specifica-
tion Section I4, in concrete-filled steel tubes, the concrete 

fill provides support against buckling of the steel tube, and 
therefore, Fcr is taken as 0.6Fy for these sections. This would 
result in:

Vn( AISC) = 0.5 0.6Fy( )Fcr Ag

= 0.3Fy Dt

= 0.94DtFy

π

Incidentally, this result corresponds to the first occurrence 
of yield at one point on the entire cross section (at its center 
in this case), as derived using classical equations to calcu-

late elastic shear stresses (i.e., 
VyQ

Ib
, from any mechanics 

of materials textbook, with Vy calculated when the shear 
stress is τy).

For case 2, the shear strength of the concrete alone would 
be:

 Vc (ACI ) = 0.0632Ac fc′ (4)

where
Ac = area of the concrete section, in.²

fc′ = uniaxial compressive strength of the concrete, ksi

Case 3 provides a marginal increase in shear strength over 
case 1, proportionally to how much the area of shear rein-
forcement adds to the area of the steel tube.

All the current AISC Specification Section I4 options 
are conservative and result in inefficient material use and 
increase in costs when shear governs the design.

Complex Shear Strength Equation

In order to investigate the behavior of circular CFST mem-
bers under shear deformation, a series of finite element 
analyses were performed using element types and material 
models validated against experimental results, as described 
in more detail in Kenarangi and Bruneau (2020b). Analyses 
showed that a significant diagonal compression strut with 
a 45° angle developed in the concrete for some shear span-
to-diameter (a/D) ratios. This is illustrated in Figure  1, 
which shows iso-surfaces for two different a/D ratios. To 
more clearly illustrate the development of the compression 
strut, principal stresses lower than 2.5 ksi are not shown 
in these figures. As a/D increases or decreases beyond the 
optimum case of a/D = 0.5 [which is the geometry shown 
in Figure 1(a)], the strength of the compression strut rapidly 
becomes less significant, as shown in Figure 1(b).

Based on observations from finite element analysis 
results, equations for the contribution of the infill concrete 
to the total shear strength of the CFST were developed. In 
these equations, the critical concrete strut cross section, 
Astrut, was located at the mid-length of the strut and was 
calculated from geometry to be:
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Dc = concrete core diameter, in.

H =  height of the specimen in double curvature shear 
setup, which is equal to 2a, in.

The resulting strut force, Fstrut, calculated by multiply-
ing Astrut by a uniformly distributed stress conservatively 
assumed to be equal to fc′, was then converted into horizontal 
(shear) and vertical (axial) force components, respectively, 
corresponding to the contribution to shear strength provided 
by the strut, Vstrut, and a vertical force component of the 
strut, Pstrut, transferred to the steel tube. Therefore,
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and

(a) 0.25 ≤ a/D ≤ 0.5

(b) a/D < 0.25

Fig. 1. Definition of diagonal compression strut in CFST.
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Vstrut = 2

2
Astrut fc′

 
(7a)

 
Pstrut = 2

2
Astrut fc′

 
(7b)

At large shear span ratios, no strut develops, and the 
shear strength of the concrete defaults to the existing shear 
strength equations for concrete. Therefore, a lower limit 
of concrete shear strength, Vc, was defined here for Vconc, 
as shown in Equations  8 and 9. In Equation  9, the term 
outside the parenthesis is the nominal shear resistance of 
the concrete in accordance with ACI. The term inside the 
parenthesis was added to include the axial load effect on 
the shear resistance of the concrete. This term was adapted 
from ACI 318 (2011, 2014) Section 22.5.6 (which was the 
edition of ACI 318 in effect at the time this research was 
conducted).

 Vconc = max Vstrut ,Vc( ) (8)

where

Vc = 0.0632Ac fc 1+ Pstrut

2Ac
′
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To calculate the nominal shear resistance of the steel 
tube, it was assumed that the tube cross section was fully 
yielded under combined tension and shear, and the effect 
of bending moment was neglected. In this case, the total 
shear resistance of the steel tube, Vs, can be calculated by 
integrating the maximum shear stress (which is tangent to 
the surface) over the steel tube cross section as shown in 
Figure 2 and calculated in Equation 10.

 
Vs = ∫2 s,maxRt cos( )d/2

/2 τ ϕ ϕ−π
π

 
(10)

where R is the average radius of the steel tube and τs,max is 
the maximum shear stress on the steel tube cross section, 
calculated as:

 
s,max = 1

3
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(11)

where Fy is the yield stress of the steel tube and T = Pstrut As 
is the resultant tensile stress on the steel tube cross section 
due to the interaction of the concrete strut with the steel 
tube.

The resulting Vs obtained from Equation 10 is shown in 
Equation 12. The term under the square root shows that the 
shear strength of the steel tube reduces as the strut force 
increases, and Pstrut should be less than AsFy. (Note: For a 
diagonal strut at 45°, Pstrut = Vstrut.)
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Note that for all sections considered, the presence of 
Pstrut was found to only have a marginal effect on the value 
of tube Vs. Also, in calculation of the shear contribution of 
the steel tube, the effect of the moment was neglected. This 
effect can be considered in the steel tube shear strength by 
including the stresses from bending moment using a simi-
lar but more complex equation (Kenarangi and Bruneau, 
2020b).

Finally, the nominal shear strength of the composite 
CFST shaft was taken as equal to the summation of the 
shear strength of the concrete core and the steel tube, as 
shown in Equation 13.

 VCFST = Vs + Vconc (13)

As mentioned before, the potential contribution of the rein-
forcing cage to the total shear strength is not included in 
this equation as it has a minimal contribution.

The proposed shear strength in Equation  13 was com-
pared to finite element results with different shear span 
to diameter ratios. Figures 3(a) and 3(b) show the cases in 
which the bending moment is neglected or is included in 
calculation of the shear strength, respectively. In these fig-
ures the strengths were normalized to the summation of the 
strengths calculated by Equations 1 and 4. In these figures, 
Mp is the theoretical plastic flexural capacity of the sec-
tion. The difference in the steel tube shear strength between 
these two cases is less than 8% for a/D < 0.5. This differ-
ence increases with the a/D ratio. Equations modified to 
account for the effect of axial load simultaneously acting 
on the cross section were also developed by Kenarangi and 
Bruneau (2020b), but these more complex equations are not 
presented here because the strength predicted by the equa-
tion used here was found to be adequately conservative in 
that case.

The proposed nominal shear strength obtained per these 
equations was compared with available test results by 
Kenarangi and Bruneau (2020a), Qian et al. (2007), Xu et 
al. (2009), Xiao et al. (2012), Nakahara and Tsumura (2014), 
Ye et al. (2016), and Roeder et al. (2016). Experimental 

ϕ

dϕ

R

t

τs,max

Steel tube
cross-section

Fig. 2. Shear distribution on the steel tube cross section.
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values were found to be, on average, 55% higher than the 
shear strength calculated by the proposed formula. To 
explain this result, Figure 4 shows cyclic hysteretic behav-
ior obtained by finite element analysis for one of the speci-
mens tested by Kenarangi and Bruneau (2020a) that failed 
under a shear dominant mode (note that none of the existing 
test data were tested under a pure shear condition because 
there is always a combination of flexure and shear at fail-
ure). In this figure, the shear forces carried by the steel tube 
and the infill concrete, as obtained from the finite element 
analysis, are compared with values at the maximum experi-
mental strength point. This shows that at the displacement 
when the maximum experimentally obtained strength was 
reached, Equation  13 gives a good estimate of the shear 
strength resisted by the steel tube but underestimates the 
shear strength resisted by the concrete. This was done 

deliberately at the time as it was believed that this level of 
conservatism would be acceptable.

Simplified Shear Strength Equation for  
Circular CFST

Equations 5 through 13, while formulated to capture fun-
damental mechanisms that develop in CFST in shear, were 
deemed to be informative but too complex for practical use. 
Furthermore, while capturing well the contribution of steel 
to the total strength (and in a manner consistent with theo-
retical results from plastic analysis), they remained con-
servative when accounting for the contribution of the infill 
concrete to the total shear strength. The following alterna-
tive equation is therefore proposed, in a format that keeps 
the rational value derived for the contribution of steel to the 
total strength, and empirically increases the contribution of 
the concrete infill to match experimental results.

 

fc′ = 5.2 ksi
Fy = 62 ksi

Mp/a

t = 0.233 in.
OD = 12.75 in.

Vs + VConc

Vs

VConc

a/D
(a) Bending moment effects are neglected

 

 

fc′ = 5.2 ksi
Fy = 62 ksi

t = 0.233 in.
OD = 12.75 in.

Mp/a

VsM + VConc

VsM

VConc

a/D
(b) Bending moment effects are included

Fig. 3. Normalized proposed shear strength vs. shear span to diameter ratios.
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In this equation

 Vn = Vs + Vc (14)

where

 
Vs = 2Dt

3
Fy = 1.15DtFy

 
(15)

and

 Vc = 0.0316 Ac fcβ ′ (16)

in which the value of β is calibrated to be 18 and 20 for 
circular and rectangular CFST, respectively, for reasons 
explained in a subsequent section. Incidentally, this equa-
tion for Vs is the same one used in the Eurocode (CEN, 
2005) as the upper strength limit for compact hollow cir-
cular tubes.

Note that while the proposed alternative shear strength 
equation does not explicitly consider the contribution of 
the developed compressive diagonal strut in the concrete, it 
empirically does so through the large β values used. Also 
note that the potential contribution of the reinforcing cage 
to the total shear strength is not included in the equations 
because the effect of the reinforcing cage was shown to 
have no significant impact on shear strength in experiments 
(Kenarangi and Bruneau, 2020a).

Experimental Database

For reasons mentioned earlier, there are a limited number of 
experimental tests developing the shear strength of circular 
CFST. The majority of these tests have been conducted using 

three- or four-point bending setups with simple end supports 
and under monotonic loadings (Roeder et al., 2016; Xiao et 
al., 2012; Xu et al., 2009). These test setups generate single 
curvature deflection along the member and, depending on 
the distance of the supports from each other, can produce 
flexure, flexure-shear, and shear dominant failures for long 
to short support distances, respectively. More representative 
of the loading likely to be experienced in panel zones, only 
some tests have considered specimens subjected to double-
curvature deflection rather than single curvature, and even 
fewer have considered cyclic loading conditions. Mono-
tonic double-curvature shear tests on small diameter CFST  
(4.7-in. diameter) have been performed by Ye et al. (2016) 
using a three-point bending setup and fixed support condi-
tions at both ends. Cyclic double-curvature tests have been 
performed by Nakahara and Tsumura (2014) on 6.5-in.-
diameter CFST and by Bruneau et al. (2018) on 12.75-in.-  
and 16-in.-diameter CFSTs with and without internal 
reinforcing cages, using a pantograph device to apply 
cyclic loading to specimens subjected to double-curvature 
deformations.

Summary of Experimental Results

The experimental tests considered here are listed in Table 1. 
In this table, D is the diameter of the steel tube; a is the 
clear span between the supports for single-curvature test 
setups and half of this value for the double-curvature test 
setups; P is the applied axial compressive load; and P0 is 
the summation of yield strength of the steel tube and crush-
ing capacity of the concrete, ignoring buckling (i.e., P0 =  
Ac fc′ + AsFy). Note that only two sets of results were obtained 

 

Displacement corresponding 
to maximum exp. strength 

Vs Proposed
Vconc Proposed

Fig. 4. Comparison of component shear forces of a 12.75-in.-diameter  
CFST tested by Kenarangi and Bruneau (2020a) with the proposed formula.
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from cyclic loading, which was not deemed sufficient here 
to differentiate between results obtained from cyclic and 
monotonic loading.

Database for Shear Strength

For the Roeder et al. (2016) tests, the specimens that report-
edly had a dominant flexural failure were excluded in the 
evaluation of the proposed shear formula. For the Ye et al. 
(2016) tests, the specimens with shear span-to-diameter 
ratio of less than 0.1 were also excluded. The Qian et al. 
(2007) tests on specimens with a low-shear span-to-diameter  
ratio (typically 0.1) were not considered here due to sus-
piciously high strength compared to all other researchers’ 
results (with Vexp/Vsimplified values as high as 3.48). For all 
the existing test results, any test with Mexp/Mp > 1.15 was 
considered as a flexural dominant failure and was excluded 
from evaluations. The plastic moment, Mp, is the composite 
section plastic moment calculated using the plastic stress 
distribution method (PSDM). A few cases for which 1.0 < 
Mexp/Mp < 1.15 were included when they were reported by 
the original researchers as failing in shear.

Also, it should be noted that not all the tested specimens 
may have exhibited a shear failure mode. The test result 
observations provided by Xiao et al. (2012) and Ye et al. 
(2016) for specimens having a/D values as low as 0.1 and 
0.15 suggest that some of those specimens may have had 
a mixed failure mode of shear combined with other local-
crushing phenomena.

Comparison of Experimental Results with 
Shear Strength Equations

To compare with experimental results, the ratios of the 
shear strength obtained experimentally and obtained using 
the proposed equation have been calculated for the available 

test data (Bruneau et al., 2018; Nakahara and Tsumura, 
2014; Roeder et al., 2016; Xiao et al., 2012; Xu et al., 2009; 
Ye et al., 2016). Results are presented in Tables 2 and 3 for 
tests with and without axial load, respectively.

Values of the ratio of the strengths of the existing shear 
tests, Vexp, to their corresponding shear strengths calculated 
by the proposed simplified equation, VCFST, are plotted in 
Figure 5 for specimens for which no axial load was applied. 
Note that values of the experimentally applied moments to 
the plastic moment, Mexp/Mp, included in Tables  2 and 3 
show that the values plotted here correspond to specimens 
that exhibited shear-dominant failures (i.e., not flexure-
dominant failures). Maximum calculated ratio of Mexp/Mp 
for the tests plotted in Figure 5 is 1.05. The horizontal axis 
in this figure represents the shear span-to-diameter ratio, 
a/D. The mean and standard deviation values of the results 
are included in the figure. As shown, on average, the experi-
mental values are about 11% more than the values predicted 
by the proposed simplified formula.

The experimental-to-proposed simplified shear strength 
ratios for all the available test data, also including speci-
mens for which axial load was applied, are shown in 
Figure  6. Figure  6(a) shows the ratio of experimental to 
calculated shear strengths versus the applied external axial 
load, and Figure 6(b) shows this ratio versus the shear span-
to-diameter ratio. As shown, on average, the experimental 
values are about 35% more than the values predicted by the 
proposed formula. According to Figure 6(a), the proposed 
formula gives particularly more conservative values for the 
cases with more than 0.5P/P0 applied axial load. Also, Fig-
ure 6(b) shows that the predicted values using the proposed 
formula is more conservative for a/D ratios of less than 0.2. 
Maximum calculated ratio of Mexp/Mp for all the considered 
specimens, including the axial load, is 1.12.

While the results obtained with the proposed simplified 

Table 1. Summary of the Existing Test Data on Shear Strength of Circular CFST Members

Research
Test  

Setup
Loading  

Type
Diameter Range, 

in.
a
D 

Range
0

P
P  

Range

Bruneau et al. 
(2018)

Double curvature
Cyclic  

pantograph
12, 16 0.4 0

Roeder et al. 
(2016)

Single curvature
Monotonic  

four-point bending
20 0.25–1.0 0 and 0.085

Ye et al. (2016) Double curvature
Monotonic  

three-point bending
4.7 0.15–0.75 0–0.73

Nakahara and 
Tsumura (2014)

Double curvature
Cyclic  

pantograph
6.5 0.5 0–0.4

Xiao et al. (2012) Single curvature
Monotonic  

three-point bending
6.5 0.14–1.0 0–0.62

Xu et al. (2009) Single curvature
Monotonic  

three-point bending
5.5 0.1–0.5 0
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Table continues on the next page

Table 2. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests without Axial Load

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Bruneau et al. (2018)

KB1 16.0 6.5 0.41 0.232 68.8 2.9 2757 51 0 0 437 401 1.09 2841 3428 0.83

KB3 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 396 342 1.16 1980 2489 0.80

KB4 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 397 342 1.16 1985 2489 0.80

KB5 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 414 342 1.21 2070 2489 0.83

KB6 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 407 342 1.19 2035 2489 0.82

KB7 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 404 342 1.18 2020 2489 0.81

Roeder et al. (2016)

R12 20 10 0.5 0.233 86 6.2 4031 54 0 0 651 714 0.91 6510 6211 1.05

R19 20 10 0.5 0.349 57 9.1 4891 57 0 0 952 964 0.99 9520 9684 0.98

R7 20 7.5 0.38 0.233 86 6.5 4111 50 0 0 705 702 1.00 5288 5826 0.91

R8 20 7.5 0.38 0.233 86 6.5 4121 54 0 0 802 723 1.11 6015 6233 0.96

R10 20 7.5 0.38 0.233 86 6.2 4014 54 0 0 665 712 0.93 4988 6207 0.80

R11 20 7.5 0.38 0.233 86 6.6 4162 57 0 0 600 743 0.81 4500 6551 0.69

R16 20 7.5 0.38 0.233 86 8.6 4750 57 0 0 765 805 0.95 5738 6691 0.86

R21 20 7.5 0.38 0.233 86 0.0 0 57 0 0 449 305 1.47 3368 5160 0.65

R14 20 5.0 0.25 0.233 86 8.6 4747 55 0 0 826 797 1.04 4130 6538 0.63

R15 20 5.0 0.25 0.233 86 8.8 4802 55 0 0 796 803 0.99 3980 6550 0.61

R20 20 5.0 0.25 0.233 86 2.8 2704 57 0 0 712 590 1.21 3560 6089 0.58

Ye et al. (2016)

Ye1 4.7 0.7 0.15 0.079 60 4.6 3481 49 0 0 54 41 1.31 38 101 0.38

Ye2 4.7 0.7 0.15 0.079 60 4.6 3481 49 0 0 54 41 1.32 39 101 0.38

Nakahara and Tsumura (2014)

N1 6.5 3.3 0.5 0.193 33.9 9.3 5336 79 0 0 150 166 0.90 491 713 0.69

Xiao et al. (2012)

X1 6.3 2.5 0.40 0.217 29 3.8 3137 55 0 0 141 116 1.21 354 485 0.73

X2 6.3 2.5 0.40 0.217 29 4.7 3509 55 0 0 152 119 1.27 382 492 0.78

X3 6.3 2.5 0.40 0.217 29 4.3 3348 55 0 0 146 118 1.24 368 489 0.75

X4 6.5 2.6 0.40 0.173 38 3.8 3137 50 0 0 116 99 1.17 301 399 0.75

X5 6.5 2.6 0.40 0.173 38 4.7 3509 50 0 0 128 102 1.24 332 406 0.82

X6 6.5 2.6 0.40 0.173 38 4.3 3348 50 0 0 118 101 1.17 307 403 0.76

X7 6.5 2.6 0.40 0.118 55 3.8 3137 59 0 0 84 86 0.98 219 329 0.66

X8 6.5 2.6 0.40 0.118 55 4.7 3509 59 0 0 93 90 1.03 242 336 0.72

X9 6.5 2.6 0.40 0.118 55 4.3 3348 59 0 0 87 89 0.98 225 333 0.68

X25 6.3 0.9 0.14 0.217 29 3.8 3137 55 0 0 112 116 0.97 97 485 0.20

X26 6.3 0.9 0.14 0.217 29 4.7 3509 55 0 0 118 119 0.99 102 492 0.21

X27 6.3 0.9 0.14 0.217 29 4.3 3348 55 0 0 124 118 1.05 107 489 0.22

X28 6.3 0.9 0.14 0.217 29 4.3 3348 55 0 0 157 118 1.33 136 489 0.28

X29 6.5 0.9 0.14 0.173 38 4.3 3348 50 0 0 146 101 1.45 132 403 0.33

X30 6.5 0.9 0.14 0.118 55 4.3 3348 59 0 0 101 89 1.14 92 333 0.28

X31 6.5 0.9 0.14 0.173 38 3.8 3137 50 0 0 118 99 1.20 107 399 0.27

X32 6.5 0.9 0.14 0.173 38 4.7 3509 50 0 0 129 102 1.26 117 406 0.29

X33 6.5 0.9 0.14 0.173 38 4.3 3348 50 0 0 126 101 1.25 115 403 0.28

X34 6.5 0.9 0.14 0.118 55 3.8 3137 59 0 0 90 86 1.04 81 329 0.25
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Table 2. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests without Axial Load (continued)

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Xiao et al. (2012) (continued)

X35 6.5 0.9 0.14 0.118 55 4.7 3509 59 0 0 96 90 1.06 87 336 0.26

X36 6.5 0.9 0.14 0.118 55 4.3 3348 59 0 0 92 89 1.04 83 333 0.25

X55 6.3 3.2 0.50 0.256 25 2.9 2764 65 0 0 169 147 1.15 538 652 0.82

X57 6.5 3.3 0.50 0.161 40 2.9 2764 59 0 0 99 101 0.99 324 425 0.76

Xu et al. (2009)

Xu16 5.5 0.6 0.1 0.145 38 4.9 3576 53 0 0 93 76 1.23 51 255 0.20

Xu17 5.5 1.1 0.2 0.145 38 4.9 3576 53 0 0 83 76 1.10 91 255 0.36

Xu18 5.5 1.7 0.3 0.145 38 4.9 3576 53 0 0 80 76 1.06 132 255 0.52

Xu19 5.5 2.8 0.5 0.145 38 4.9 3576 53 0 0 68 76 0.90 188 255 0.74

Xu26 5.5 0.6 0.1 0.145 38 4.9 3576 53 0 0 88 76 1.16 188 255 0.74

Xu27 5.5 1.1 0.2 0.145 38 4.9 3576 53 0 0 79 76 1.04 48 255 0.19

Xu28 5.5 1.7 0.3 0.145 38 4.9 3576 53 0 0 75 76 0.99 87 255 0.34

Table 3. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests with Axial Load

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Roeder et al. (2016)

R13 20 7.5 0.38 0.233 86 5.3 3737 54 0.09 202 710 683 1.04 5325 6134 0.87

Ye et al. (2016)

Ye3 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.24 32 60 41 1.47 43 101 0.42

Ye4 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.24 32 57 41 1.38 40 101 0.40

Ye5 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.59 78 71 41 1.73 51 101 0.50

Ye6 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.59 78 72 41 1.74 51 101 0.50

Ye7 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.73 97 75 41 1.82 53 101 0.53

Ye8 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.73 97 71 41 1.73 51 101 0.50

Ye11 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.49 65 65 41 1.58 46 101 0.46

Ye12 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.49 65 64 41 1.56 45 101 0.45

Ye13 4.7 2.4 0.5 0.079 60 4.6 3481 49 0.49 65 39 41 0.96 93 101 0.92

Ye14 4.7 2.4 0.5 0.079 60 4.6 3481 49 0.49 65 44 41 1.06 103 101 1.02

Ye17 4.7 0.7 0.15 0.079 60 8.3 4670 49 0.34 65 79 48 1.65 56 106 0.53

Ye18 4.7 0.7 0.15 0.079 60 8.3 4670 49 0.34 65 76 48 1.58 54 106 0.51

Ye19 4.7 0.7 0.15 0.118 40 4.6 3481 60 0.37 65 88 58 1.51 62 173 0.36

Ye20 4.7 0.7 0.15 0.118 40 4.6 3481 60 0.37 65 88 58 1.51 62 173 0.36

Nakahara and Tsumura (2014)

N2 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.1 41 109 99 1.10 343 316 1.08

N3 6.5 3.3 0.5 0.193 33 9.3 5336 79 0.3 174 162 166 0.98 530 713 0.74

N4 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.3 123 96 99 0.97 303 316 0.96

N5 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.1 51 153 160 0.96 501 700 0.72

N6 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.2 102 156 160 0.98 508 700 0.73

N7 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.4 205 148 160 0.93 484 700 0.69

N8 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.15 61 102 99 1.03 321 316 1.02

N9 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.2 82 112 99 1.13 354 316 1.12

Table continues on the next page
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Table 3. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests with Axial Load (continued)

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Xiao et al. (2012)

X10 6.3 2.5 0.40 0.217 29 3.8 3137 55 0.32 105 164 116 1.41 412 485 0.85

X11 6.3 2.5 0.40 0.217 29 4.7 3509 55 0.31 109 169 119 1.41 425 492 0.86

X12 6.3 2.5 0.40 0.217 29 4.3 3348 55 0.31 106 175 118 1.49 442 489 0.90

X13 6.5 2.6 0.40 0.173 38 3.8 3137 50 0.31 89 142 99 1.44 368 399 0.92

X14 6.5 2.6 0.40 0.173 38 4.7 3509 50 0.30 94 147 102 1.43 381 406 0.94

X15 6.5 2.6 0.40 0.173 38 4.3 3348 50 0.30 90 152 101 1.51 394 403 0.98

X16 6.5 2.6 0.40 0.118 55 3.8 3137 59 0.30 77 108 86 1.25 280 329 0.85

X17 6.5 2.6 0.40 0.118 55 4.7 3509 59 0.28 80 109 90 1.21 283 336 0.84

X18 6.5 2.6 0.40 0.118 55 4.3 3348 59 0.28 77 111 89 1.26 289 333 0.87

X19 6.3 2.5 0.40 0.217 29 3.8 3137 55 0.64 210 158 116 1.36 398 485 0.82

X20 6.3 2.5 0.40 0.217 29 4.7 3509 55 0.62 219 182 119 1.52 459 492 0.93

X21 6.5 2.6 0.40 0.173 38 3.8 3137 50 0.62 179 146 99 1.48 380 399 0.95

X22 6.5 2.6 0.40 0.173 38 4.7 3509 50 0.60 188 157 102 1.54 409 406 1.01

X23 6.5 2.6 0.40 0.118 55 3.8 3137 59 0.60 154 123 86 1.42 318 329 0.97

X24 6.5 2.6 0.40 0.118 55 4.7 3509 59 0.56 160 130 90 1.44 339 336 1.01

X37 6.3 0.9 0.14 0.217 29 3.8 3137 55 0.32 105 202 116 1.75 175 485 0.36

X38 6.3 0.9 0.14 0.217 29 4.7 3509 55 0.31 109 225 119 1.88 195 492 0.40

X39 6.3 0.9 0.14 0.217 29 4.3 3348 55 0.31 106 214 118 1.81 185 489 0.38

X40 6.5 0.9 0.14 0.173 38 3.8 3137 50 0.31 89 185 99 1.88 168 399 0.42

X41 6.5 0.9 0.14 0.173 38 4.7 3509 50 0.30 94 202 102 1.97 183 406 0.45

X42 6.5 0.9 0.14 0.173 38 4.3 3348 50 0.30 90 191 101 1.90 173 403 0.43

X43 6.5 0.9 0.14 0.118 55 3.8 3137 59 0.30 77 152 86 1.76 137 329 0.42

X44 6.5 0.9 0.14 0.118 55 4.7 3509 59 0.28 80 169 90 1.87 153 336 0.45

X45 6.5 0.9 0.14 0.118 55 4.3 3348 59 0.28 77 157 89 1.78 143 333 0.43

X46 6.3 0.9 0.14 0.217 29 3.8 3137 55 0.64 210 211 116 1.82 183 485 0.38

X47 6.3 0.9 0.14 0.217 29 4.7 3509 55 0.62 219 236 119 1.98 204 492 0.42

X48 6.3 0.9 0.14 0.217 29 4.3 3348 55 0.62 211 270 118 2.29 234 489 0.48

X49 6.5 0.9 0.14 0.173 38 3.8 3137 50 0.62 179 230 99 2.34 209 399 0.52

X50 6.5 0.9 0.14 0.173 38 4.7 3509 50 0.60 188 236 102 2.30 214 406 0.53

X51 6.5 0.9 0.14 0.173 38 4.3 3348 50 0.60 180 202 101 2.01 183 403 0.45

X52 6.5 0.9 0.14 0.118 55 3.8 3137 59 0.60 154 172 86 1.99 156 329 0.47

X53 6.5 0.9 0.14 0.118 55 4.7 3509 59 0.56 160 185 90 2.05 168 336 0.50

X54 6.5 0.9 0.14 0.118 55 4.3 3348 59 0.57 155 193 89 2.18 175 333 0.53

equation are safe even when including the results from Xiao 
et al. (2012) and Ye et al. (2016) with a/D ratios less than 
or equal to 0.15 (as shown in Figure 6), by excluding the 
test results of a/D ≤ 0.15, the mean value of experimental-
to-proposed shear strengths would improve to 1.15 with a 
lower standard deviation of 0.19.

The shear strengths from the steel tube and concrete 

infill of a circular CFST calculated by the proposed simpli-
fied equation for different shear span ratios are shown in 
Figure 7. Results from monotonic finite element analyses 
are also shown in this figure for comparison. This figure 
shows how the simplified equation compares to the finite 
element analyses results for different shear span to depth 
ratios.
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Fig. 5. Ratio of strength from existing test results with no axial load to  
proposed simplified shear strength formula as a function of shear span, a/D.

RECTANGULAR CONCRETE-FILLED 
STEEL TUBES

This section presents for rolled and built-up rectangular 
(and square) CFST: the experimental database, proposed 
simplified shear strength equation, and comparison of cal-
culated to experimental shear strengths.

Experimental Database

Compared to circular CFST, fewer shear tests on rectan-
gular CFST are found in the literature. The shear tests 
available in the literature can be categorized based on the 
type of loading and test setup used. For example, tests have 
been conducted using (1)  a pantograph type test setup, 
(2)  a three- or four-point beam bending type test setup, 
and (3) a beam-to-column subassembly type test setup for 
panel-zone shear. The experimental database, described in 
the following subsections, includes tests with shear span-
to-depth (a/D) ratios ranging from 0.075 to 1.5; axial load 
ratios (P/P0) ratios ranging from 0.0 to 0.65; plate slender-
ness ratios (D/t) ranging from 21 to 67; concrete compres-
sive strength, fc′, ranging from 2.4 to 17 ksi; and steel yield 
stress, Fy, ranging from 42 to 117 ksi. In the following dis-
cussion and database, a is the shear span defined by the 
loading during the test; D is the total depth of the speci-
men in the direction of shear loading; P is the applied com-
pressive axial force; P0 is the section axial capacity of the 
rectangular CFST calculated as the sum of the steel yield 
strength, AsFy, and the concrete compressive strength, Ac fc′; 
b is the width of the CFST member; t is the thickness of 
the steel tube; fc′ is the uniaxial compressive strength of 

concrete; Fy is the yield strength of steel; As is the cross-
sectional area of steel tube; and Ac is the cross-sectional 
area of the concrete infill. Tests with an a/D ratio greater 
than 1.5 exhibit flexure-dominant behavior and, therefore, 
have been excluded in this study.

Tomii and Sakino (1979) were one of the earliest 
researchers to investigate the fundamental flexure and 
shear behavior of rectangular CFST members. Forty small-
scale specimens were tested and categorized into five series 
of tests, depending on the parameter values. Sakino and 
Ishibashi (1985) continued the work and conducted tests on 
21 small-scale specimens that could be categorized into six 
series based on the parameters. Both research studies were 
conducted using the same pantograph type test setup that 
subjected the specimens to double-curvature bending under 
constant axial load and monotonic or cyclic shearing force.

Koester (2000) conducted experimental investigations 
to evaluate the fundamental shear behavior of rectangular 
CFST members and the panel-zone behavior of rectangular 
CFST-to-steel beam connections. The connection panel-
zone region was idealized as shown in Figure 8, and a sche-
matic view of the test setup is shown in Figure 9. This paper 
only includes the specimens exhibiting shear failure and 
having regular steel tube geometry (no cutouts, etc.).

Koester (2000) also conducted six full-scale tests on 
subassemblies consisting of square CFST column-to-steel 
beam moment connections, where the moment connections 
were split-tee. through-bolted moment connections. The 
tests were conducted by subjecting the subassembly speci-
mens to cyclic lateral loading using the schematic shown in 
Figure 10. Ricles et al. (2004) supplemented the research 
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Fig. 6. Ratio of strength from existing test results to proposed simplified shear strength formula.



ENGINEERING JOURNAL / THIRD QUARTER / 2021 / 209

 

t = 0.233 in.
OD = 12.75 in.
    = 5.2 ksi
fy = 62 ksi

′fc

VSimpli�ed
Conc.
Steel
FEA, Total
FEA, Steel
FEA, Conc.
Mp/aβ

β

a/D

0.
29

F
0.

06
A

/
V

Si
m

pl
i�

ed
A

c
s

y
+

′f c
⎛ ⎝

⎞ ⎠

Fig. 7. Normalized proposed simplified shear strength vs. shear span-to-diameter ratios.

Fig. 8. Panel-zone region in connections and  
idealization for testing (adapted from Koester, 2000).

Fig. 9. Schematic view of test setup for idealized  
small-scale specimens (adapted from Koester, 2000).

conducted by Koester (2000) and evaluated the seismic 
behavior of two interior joint type subassemblies consist-
ing of square CFST columns—steel beam moment connec-
tions with weak panel zones. The panel zones had interior 
steel plate diaphragms that were complete joint penetration 
welded on only three or four sides.

Nishiyama et al. (2004) studied the effect of high-
strength concrete and steel material on the shear strength of 
the panel zone of CFST column-to-steel beam joint subas-
semblies. Five specimens consisting of subassemblies made 
from square CFST columns and steel beams were tested. 
Both interior and exterior joint types with through and outer 
diaphragms were studied. The specimens were designed to 
fail under panel-zone shear by reducing the thickness of the 

CSFT steel tube in the panel zone. The axial load on col-
umns was held constant as a reversed cyclic lateral load was 
applied at the beam ends, as shown in Figure 11. Fukumoto 
and Morita (2005) continued the work and presented three 
more tests on interior joint type steel beam-square CFST 
column subassemblies with interior diaphragms.

Wu et al. (2005) studied the seismic behavior of square 
CFST column-to-steel beam joints by testing three interior 
joint type subassemblies using a setup similar to Figure 11. 
Shawkat et al. (2008) tested four rectangular CFST under 
three-point bending in a displacement-controlled mode. Ye 
et al. (2016) tested 18 small-scale specimens under various 
combinations of axial compression and shear. The speci-
mens were fixed at the ends, subjected to constant axial 
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Fig. 10. Schematic view of test setup with cyclic lateral loading 
applied at column top (adapted from Koester, 2000).

Fig. 11. Schematic view of test setup with cyclic loading applied 
at beam ends (adapted from Nishiyama et al., 2004).

Fig. 12. Schematic view of the test setup (adapted from Ye et al., 2016).

loading, and tested under monotonic three-point bending 
to produce double curvature using the test setup with sche-
matic shown in Figure 12.

Summary of Results

The compiled experimental database is summarized in 
Table 4 along with the relevant parameters, including test 
setup; loading type; cross-section dimensions; shear span-
to-depth ratio, a/D; and axial load ratio, P/P0. The general 
conclusions and results from the research database are as 
follows:

1. Rectangular CFST are typically flexure critical and 
very difficult to fail in shear due to their high shear 
strength, which includes contributions from the webs 
of the steel tube and the concrete infill (Tomii and 
Sakino, 1979; Koester, 2000).

2. Changing the failure mode from flexure critical 
to shear critical depends primarily on the shear 
span-to-depth ratio, a/D. The a/D ratio has to be 
made extremely small (<1.0) to force shear failure. 
Specimens with 1.0  < a/D  < 3.0 generally fail in 
combined shear and flexure, and specimens with 
a/D  > 3.0 generally fail in flexure (Sakino and 
Ishibashi, 1985).
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3. Applying axial compression (P/P0) further increases 
the shear strength of specimens (Ye et al., 2016). This 
increase is due to the reduction in concrete cracking 
and increase in concrete contribution to the shear 
strength.

4. Increasing the steel yield strength or increasing the 
steel plate thickness of specimens generally increases 
their shear strength due to the increase in the steel 
contribution to the shear strength (Nishiyama et al., 
2004, Fukumoto and Morita, 2005).

5. Specimens failing in shear, particularly panel-zone 
shear specimens, exhibit reasonable ductility and 
deformation capability (Wu et al., 2005, Nishiyama 
et al., 2004).

6. The load bearing width does not affect the shear 
strength or the load-displacement behavior of 
subassembly panel-zone specimens (Koester, 2000).

7. The effects of reducing the D/t ratio were inconclusive. 
For small-scale specimens, with all other parameters 
held constant, lower D/t ratios resulted in increased 
concrete contribution to the shear strength, owing to 
better confinement. However, this beneficial effect 
was not observed in full-scale specimen tests with 
lower D/t ratios (Koester .2000).

Database for Shear Strength

The compiled experimental database was reviewed care-
fully to identify and include specimens that failed in shear 
and were shear critical. The following provides additional 
discussion and rationale for including or excluding specific 
specimens in the final database for shear strength of rect-
angular CFST.

• Tomii and Sakino (1979) and Sakino and Ishibashi 
(1985) reported that their specimens did not have clear 
shear failures. The specimens developed diagonal shear 
cracks in the concrete, but both the flanges yielded 
(due to flexure) at the ultimate state. These specimens 
were eventually considered flexure critical (with high 
shear demands), but not shear critical. They were not 
included in the final database of tests considered for 
evaluating the shear strength of rectangular CFST.

• Koester (2000) included some specimens that were 
tested for examining mechanics-based models for 
shear strength. These specimens had cutouts in the 
steel webs or different filling material than concrete. 
These exploratory specimens were not included in the 
final database.

• For the subassembly specimens tested by Koester 
(2000), Ricles et al. (2004), Nishiyama et al. (2004), 
Fukumoto and Morita (2005), and Wu et al. (2005), 

Table 4. Summary of the Existing Test Data on Shear Strength of RCFST Members

Research
Test  

Setup
Loading  

Type
Section,  
in. ×× in.

a//D  
Range

P//P0  
Range

Tomii and Sakino 
(1979)

Pantograph
Double-curvature 

bending 
3.9 × 3.9 0.83–1 0–0.5

Sakino and 
Ishibashi (1985)

Pantograph
Double-curvature 

bending 
3.9 × 3.9 1–1.5 0–0.5

Koester (2000) Four-point bending Cyclic bending
8 × 8, 12 × 12,  

16 × 16
0.75 0

Ricles et al. (2004)
Beam-to-column 

Subassembly
Cyclic lateral 

loading
16 × 16 0.75 0.12

Nishiyama et al. 
(2004)

Beam-to-column 
Subassembly

Cyclic lateral 
loading

9.8 × 9.8,  
6.4 × 6.4

0.5 0.2–0.65

Fukumoto and 
Morita (2005)

Beam-to-column 
Subassembly

Monotonic lateral 
loading

7.9 × 7.9 0.75 0

Wu et al. (2005)
Beam-to-column 

Subassembly
Cyclic lateral 

loading
15.7 × 15.7 0.6 0.16–0.19

Shawkat et al. 
(2008)

Three-point bending Monotonic bending 4.0 × 5.9 1.0 0

Ye et al. (2016) Three-point bending Monotonic bending 4.7 × 4.7 0.075–0.75 0–0.65
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Comparison of Experimental Results with 
Shear Strength Equations

Because the simplified shear strength equation does not 
account for the effects of axial force, the final experimen-
tal database was parsed into specimens subjected to low 
levels of axial force (P/P0 < 0.25), shown in Table 5, and 
higher levels of axial force (P/P0 > 0.25), shown in Table 6. 
These tables include the reference source of the specimens 
and various material and geometric parameters, including 
the shear span-to-depth ratio, a/D, tube slenderness, D/t, 
and ratio and axial load, P/P0. The tables also include the 
experimental values of shear strength, Vexp, and the corre-
sponding flexural moment strength, Mexp, in the specimens. 
The shear strength, Vn, calculated using Equations 17 to 20, 
and the plastic moment capacity, Mp, calculated accord-
ing to AISC Specification Section I1.2a (2016b), using the 
plastic stress distribution method while accounting for the 
effects of axial force, P, are included in the tables. The com-
parisons of the experimental values of shear strength and 
corresponding flexural moment with the calculated capaci-
ties—that is, Vexp/Vn and Mexp/Mp—are also included in 
the tables, and lead to the following statistics. The com-
parisons of Vexp/Vn in Table  5 have a mean value of μ  = 
1.19, a standard deviation of σ  = 0.15, and a coefficient 
of variation (CoV) of 0.13. The comparisons of Vexp/Vn in 
Table 6 have μ = 1.61, σ = 0.11, and a CoV of 0.07. When 
considered all together, irrespective of the axial load level, 
the comparisons of Vexp/Vn have a μ = 1.3, σ = 0.24, and a 
CoV of 0.18. Thus, the proposed simplified shear strength 
equation is reasonably accurate for specimens with axial 
load level P/P0 less than 25%. As expected, the proposed 
equation is more conservative for specimens with an axial 
load level P/P0 greater than 25%. For specimens with P/P0 

< 0.25, Figure  13(a) shows the variation of Vexp/Vn with 
respect to the a/D ratio, and Figure 13(b) shows the varia-
tion of Vexp/Vn with respect to the D/t ratio. For the range of 
parameters considered, there is no correlation with respect 
to the a/D ratio or the D/t ratio for these specimens. For 
the complete database from Tables 5 and 6, including all 
ratios P/P0, Figure 14(a) shows the variation of Vexp/Vn with 
respect to the a/D ratio, and Figure 14(b) shows the varia-
tion of Vexp/Vn with respect to the axial load level P/P0. As 
seen in these figures, even for the complete database, there 
is no correlation with respect to the a/D ratio of the speci-
mens, but increasing the axial load level P/P0 increases the 
Vexp/Vn ratio and the conservatism of the simplified shear 
strength equation.

RELIABILITY ANALYSIS

Reliability analyses were conducted to establish an appro-
priate β factor that should be used in the empirically mag-
nified concrete strength equation to make it possible to use 

the specimens that failed due to weld fracture in the 
connection, or due to the formation of plastic hinges 
in the steel beams before shear failure in the panel 
zones, were not included in the final database. All the 
specimens that failed in panel-zone shear yielding and 
failure were included in the final database.

• The specimens tested by Shawkat et al. (2008) could 
not be included because they were found to be flexure 
critical. Some of the specimens tested by Ye et al. (2016) 
could not be included because they had premature weld 
fracture failure before reaching shear strength.

Simplified Shear Strength Equation for 
Rectangular CFST

A simplified Equation 17 is proposed to calculate the nomi-
nal shear strength, Vn, of rectangular CFST, while account-
ing for contributions of the steel and concrete. The steel 
contribution, Vs, is calculated using Equation  18 as the 
shear strength of the webs of the rectangular cross sec-
tion, 0.6AwFy. In this equation, Aw is the area of the webs 
calculated as the total depth, D, minus 2 times half the 
flange thickness, tf, multiplied by their thickness, tw. The 
concrete contribution, Vc, is calculated using Equation 19 
as 0.0316 Ac fcβ ′, where fc′ is in ksi and Ac is the area of 
the concrete infill calculated as the product of the inter-
nal dimensions of the cross section, Ac = bd. The factor β 
accounts for the effects of the diagonal compression strut 
that forms between the load points as shown in Figure  8 
when the shear span-to-depth ratio is small. β is calculated 
using Equation 20a and the shear span-to-depth ratio, a/D. 
When a/D ≤ 0.75, β is equal to 20. When a/D > 0.75, β is 
equal to 2, which is the typical value for concrete contribu-
tion in members.

 Vn = Vs + Vc (17)

where
Vc = 0.0316 Ac fcβ ′ (18)

Vs = 0.6AwFy (19)
=β 20 for a D 0.75≤  (20a)
=β 2 for a D 0.75>  (20b)

It is important to note that this simplified shear strength 
equation does not explicitly account for the effect of axial 
force, P/P0. It considers the fact that axial compression 
increases shear strength, and therefore the shear strength 
calculated for P/P0 equal to zero (using Equations 17 to 20) 
will be conservative for situations with higher axial com-
pression. The proposed method accounts for the effects of 
concrete strut formation through an empirical factor β. It 
does not account directly or explicitly for the mechanics of 
compression strut formation in the concrete.
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Table 5. Existing Experiments—Properties, Results, and  
Comparison with the Proposed Equation for Tests with P//P0 << 25%

Specimen
b  

(in.)
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Fy  
(ksi)

P
P0

P  
(kips)

Vexp  
(kips)

Vn  
(kips) Vn

Vexp
Mexp  
(kip-
ft.)

Mp  
(kip-
ft.) Mp

Mexp

Koester (2000)

8.4A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 233 214 1.09 116 115 1.01

8.6A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 241 214 1.12 120 115 1.05

8.8A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 237 214 1.11 118 115 1.03

8.4B 8 8 6 0.75 0.375 21 6.0 52.6 0 0 313 262 1.20 156 157 1.00

8.6B 8 8 6 0.75 0.375 21 6.1 52.6 0 0 313 263 1.19 156 157 1.00

8.8B 8 8 6 0.75 0.375 21 5.9 52.6 0 0 316 261 1.21 158 157 1.01

8.B-C 8 8 6 0.75 0.25 32 5.9 61.5 0 0 232 229 1.01 116 129 0.90

8.P-C 8 8 6 0.75 0.25 32 3.9 61.5 0 0 203 213 0.95 101 126 0.81

8.P2-C 8 8 6 0.75 0.25 32 5.9 61.5 0 0 227 229 0.99 113 126 0.90

CFT.2 12 12 9 0.75 0.45 27 7.2 53.1 0 0 571 540 1.06 428 450 0.95

CFT.3 12 12 9 0.75 0.45 27 7.3 53.1 0 0 598 542 1.10 448 450 1.00

CFT.4 12 12 9 0.75 0.45 27 7.4 53.1 0 0 610 543 1.12 457 450 1.02

Nishiyama et al. (2004)

R1 9.8 9.8 4.9 0.5 0.18 54 16.0 71.3 0.20 383 566 371.3 1.52 228 255 0.90

R2 9.8 9.8 4.9 0.5 0.18 55 7.9 71.3 0.20 240 438 308.9 1.42 177 208 0.85

R3 9.9 9.9 4.9 0.5 0.19 53 14.9 109.6 0.20 425 632 458.1 1.38 255 350 0.73

R4 9.3 9.3 4.9 0.5 0.18 52 14.9 64.1 0.20 328 476 323.6 1.47 192 209 0.92

Fukumoto and Morita (2005)

SP1 7.9 7.9 5.9 0.75 0.24 33 9.3 74.1 0 0 337 252.7 1.34 179 184 0.97

SP2 7.9 7.9 5.9 0.75 0.35 22 9.3 74.8 0 0 428 316.1 1.35 227 243 0.94

SP3 7.9 7.9 5.9 0.75 0.31 25 17.0 117.2 0 0 554 437.5 1.27 294 373 0.79

Wu et al. (2005)

FSB-6 15.7 15.7 9.8 0.6 0.24 67 3.7 62.5 0.19 336 602 557.3 1.08 549 562 0.98

FSB-8 15.7 15.7 9.8 0.6 0.31 50 4.2 55.4 0.16 336 659 620.9 1.06 602 636 0.95

FSB-10 15.7 15.7 9.8 0.6 0.39 40 3.9 51.7 0.16 336 669 656.1 1.02 610 707 0.86

Ye et al. (2016)

S1-1a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0 0 55 49.9 1.10 4.6 12 0.38

S1-1b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0 0 57 49.9 1.14 4.8 12 0.40

S1-2a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.22 36 65 49.9 1.31 5.5 14 0.39

S1-2b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.22 36 61 49.9 1.23 5.1 14 0.37
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where
VF = the coefficient of variation due to fabrication effects

VM = the coefficient of variation due to material effects

VP =  the coefficient of variation reflecting uncertainties 
in the design

Circular Concrete-Filled Steel Tubes

For circular CFST, P is the mean ratio of the shear strengths 
Vexp/Vn, equal to 1.11 as reported in Figure 5 when using an 
empirical magnification factor of 18, and with correspond-
ing standard deviation of 0.14 and coefficient of variation, 
Vp, of 0.13. M was assumed to be 1.1 and 1.3 in two contem-
plated scenarios to bracket the possible expected strength 
by using Ry values typically reported for steel and concrete 
individually in the AISC Seismic Provisions (2016a). F was 
conservatively taken as 1.0, as recommended by Elling-
wood et al. (1980). VF was taken as 0.05 based on Ravindra 
and Galambos (1978). For the case where values for steel 
were used, VM was taken as 0.07 based on the material 
property study conducted by Liu (2003). For the case where 
values for concrete were used, VM was taken as 0.18 based 
on MacGregor (1976).

The resulting VR values obtained considering steel and 
concrete variability as two independent cases are 0.16 and 
0.23, respectively. These resulted in strength reduction fac-
tors, ϕ, of 0.88 and 0.90, respectively. These are approxi-
mately equal to the strength reduction factor of 0.90 used 
throughout most of the 2016 AISC Specification. Note that 
the same calibration exercise using an empirical magnifi-
cation factor of 20 resulted in a strength reduction factor 
closer to 0.85 and thus, deemed too low to justify using in 
light of the desirable target of 0.90.

the common-strength reduction factor, ϕ, of 0.9 typically 
used in the 2016 AISC Specification. Reliability analysis is 
usually conducted to calculate ϕ for values obtained using 
a proposed strength equation, but calibrating the strength 
instead is acceptable here given the empirical nature of the 
magnification for the concrete strength contribution to the 
total strength. These reliability analyses were conducted 
using ASCE/SEI 7, Equation C2.3 2 (2016), namely:

 
= μR

Rn
e R Vα− R = PMFeϕ ⎛

⎝
⎞
⎠

β R Vα− Rβ

 
(21)

where β is the reliability index in this case (and not the 
empirical magnification factor expressed by the same 
Greek letter). As experiments have shown the shear failure 
mode of CFST to be ductile, a reliability index of 3.0 was 
selected. As recommended by ASCE/SEI 7 (2016), the lin-
earization approximation constant, α, was set equal to 0.70 
to separate the resistance and demand uncertainties.

In Equation 21, 
μR

Rn

⎛
⎝

⎞
⎠
 is the mean ratio of the experimental-

to-nominal strength calculated using the associated design 
equation, equal to the product PMF, where P is the bias 
(mean ratio) of experimental strength to the strength cal-
culated using measured material properties (i.e., steel 
coupon and concrete cylinder strengths), M is the bias in 
the material properties calculated as the mean ratio of the 
measured-to-nominal material strength, and F is the bias 
due to fabrication issues calculated as the mean ratio of the 
measured-to-nominal cross-sectional properties.

In Equation 21, Vr is calculated as:

 VR = VP
2 + VM

2 + VF
2

 (22)

Table 6. Existing Experiments—Properties, Results, and  
Comparison with the Proposed Equation for Tests with P//P0 >> 25%

Specimen
b 

(in.)
D 

(in.)
a 

(in.)
a
D

t 
(in.)

D
t

fc′′ 
(ksi)

Fy 
(ksi)

P
P0

P 
(kips)

Vexp 
(kips)

Vn 
(kips) Vn

Vexp
Mexp 
(kip-
ft.)

Mp 
(kip-
ft.) Mp

Mexp

Ye et al. (2016)

S1-3a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.52 87 82 50 1.64 6.8 10.8 0.63

S1-3b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.52 87 77 50 1.54 6.4 10.8 0.59

S1-4a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.65 109 85 50 1.71 7.1 7.1 1.01

S1-4b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.65 109 85 50 1.71 7.1 7.1 1.00

S2-2a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.43 73 71 50 1.42 5.9 12.4 0.48

S2-2b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.43 73 73 50 1.45 6.1 12.4 0.49

S3-1a 4.7 4.7 0.7 0.15 0.08 60 8.3 49.1 0.3 73 100 60 1.68 8.4 17.3 0.48

S3-1b 4.7 4.7 0.7 0.15 0.08 60 8.3 49.1 0.3 73 103 60 1.72 8.6 17.3 0.50

S4-1a 4.7 4.7 0.7 0.15 0.12 40 4.6 60.3 0.32 73 111 67 1.66 9.3 21 0.44
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 (a) Shear span-to-depth a/D ratio (b) Tube slenderness D/ t ratio

Fig. 13. Variation of Vexp/Vn for specimens with P/P0 < 25% from Table 5.

  
 (a) Shear span-to-depth a/D ratio (b) Axial P/P0 levels

Fig. 14. Variation of Vexp/Vn for all specimens included in Tables 5 and 6.
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Fig. 15. Recommended transition for β in proposed equations for shear strength of circular CFST.

Rectangular Concrete-Filled Steel Tubes

For rectangular CFST, the reliability analysis was limited 
to the specimens listed in Table  5 with a low axial load 
level (P/P0 < 0.25). As mentioned earlier, the mean value, 
μ, of Vexp/Vn is 1.19; the standard deviation, σ, is 0.15; and 
the coefficient of variation, VP, is 0.13. Similar to circular 
CFST, M  = 1.3, VM  = 0.18, F  = 1.0, and VF  = 0.05 were 
considered. The resulting value of ϕ calculated using Equa-
tion 21 was equal to 0.96. If the values of M and VM are 
changed to 1.1 and 0.07 to be conservative, then the result-
ing value of ϕ calculated using Equation 21 is equal to 0.94.

PROPOSED INTEGRATED DESIGN EQUATION

On the basis of the results obtained, it is possible to for-
mulate the following integrated requirements for the shear 
strength of both circular and rectangular CFST, in a format 
that can directly be introduced into design specifications:

The design shear strength, ϕvVn, is determined using 
ϕv = 0.90 and Equation 24 to calculate the nominal shear 
strength, Vn, as follows:

 Vn = 0.6AvFy + 0.03 Ac fcβ ′ (23)

where
Ac =  area of concrete in the filled composite member, in.2

As =  cross-sectional area of steel section, in.2

Av =  shear area of steel, in.2; the shear area for a circular 

   section is equal to 
2As

π
 and, for a rectangular section,

   is equal to the sum of the area of webs in the direc-
tion of in-plane shear

fc′ =  concrete strength, ksi

β =  2 for members with Mu/Vud ≥ 0.7, where Mu and 
Vu are equal to the maximum moment and shear 
demands, respectively, along the member length, 
and d is equal to the member depth in the direction 
of bending

β =  20 for members with rectangular cross sections and 
Mu/Vud ≤ 0.5

β =  18 for members with circular cross sections and 
Mu/Vud ≤ 0.5

Linear interpolation between the limiting β values should 
be used for members with Mu/Vud between 0.5 and 0.7.

The proposed variation in the value of β reflects the fact 
that there is a lack of data on the shear strength of circular 
members for span ratios greater than 0.5. A transition from 
the β values of 18 and 20 down to the value of 2 is expected, 
but the exact point at which this happens is unknown, other 
than the fact that it should occur at a shear span greater 
than 0.5. Although the experimental data for rectangular 
members presented in this paper suggests a β value of 20 
is acceptable for shear span-to-depth ratios up to 0.75, at 
this time, a relatively rapid transition to a value of 2 at a 
shear span of 0.7 is proposed, as illustrated in Figure 15, 
in superposition to “back-calculated” values corresponding 
to each of the experimental data considered. More abrupt 
transitions can be problematic when implemented in design 
software. A smoother transition is possible and will be con-
sidered when more data become available.
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than 0.5, to possibly extend the range of high shear strength 
to a broader range of applications. Furthermore, given that 
only a limited number of specimens in past experiments 
were subjected to a cyclic loading regime, it would be desir-
able in future research to conduct more inelastic cyclic tests 
over a more extensive range of parameters to further assess 
the limits of applicability of the proposed model.
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materials. In Equation 27, VnF is the nominal shear strength, 
which is the sum of the shear yield strength of the steel 
tube, VsF, and the shear strength contribution of the con-
crete infill, VcF. As shown in Equation 28, VsF accounts for 
the effects of axial compression on the shear yield strength 
of the steel, where fP is the axial stress in the steel tube due 
to the applied compression. As shown in Equation 29, VcF 
includes the contribution of the main concrete compressive 
strut and the confining struts resulting from the formation of 
plastic hinges in the flange plates of the steel tube. In Equa-
tion 29, Dc is the depth of the concrete panel, θ is the angle 
of the concrete strut with respect to the vertical and depends 
on the a/D ratio, and Mpf is the plastic moment capacity of 
the steel tube flange plate. It is important to note that VcF 
does not account for the effects of axial compression.

AIJ (1987) provides Equation 31 to calculate the panel-
zone shear strength, VnJ, of rectangular CFST:

 
VnJ =

1.2 2 fsc c + f νss s( )
d

γν

 
(31)

where
fsc = short-term shear strength of concrete, MPa

 = min (0.05 fc′, 0.74 + 0.015 fc′)
γ = 2.5 × D/d ≤ 4.0 for a square section

d =  center-to-center distance between beam flanges, 
mm

vc = volume of concrete in the panel, mm3

fss = short-term shear strength of steel, MPa

	 = Fy 3

vs =  volume of steel web of the shear panel, mm3

It is important to note that VnJ does not account for the 
effects of axial compression.

These equations were used to calculate the shear 
strengths of the specimens included in the final database. 
Table 7 shows the ratios of the experimental-to-calculated 
shear strength for all the specimens included in Table  5, 
which had a low axial load level (P/P0 < 0.25). As shown 
by the ratios and the statistical evaluation (μ, σ, and CoV) 
at the bottom of the table, the Fukumoto and Morita (2005) 
approach seems to be the most accurate (on average) and 
with the least CoV. However, it calculates shear strength 
ratios in the range of 0.80–0.89 for a few specimens tested 
by Ye et al. (2016). The AIJ (1987) method is the most con-
servative and has just a couple of ratios less than 1.0. The 
Koester (2000) approach is also quite accurate (on average), 
but it does have a few values in the 0.90–0.95 range for 
specimens tested by Wu et al. (2005) and Ye et al. (2016). 
The proposed simplified approach is reasonably accurate 
and has just a couple of ratios less than 1.0.

Table  8 shows the ratios of the experimental-to- 
calculated shear strength for all the specimens included in 
Table 6, which had a higher axial load level (P/P0 > 0.25). 
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APPENDIX

Other Shear Strength Equations for Rectangular CFST

Other researchers have also developed and proposed 
equations for calculating the shear strength of rectangu-
lar CFST. These include Koester (2000), AIJ (1987), and 
Fukumoto and Morita (2005). The equations proposed by 
Koester were quite similar to the proposed simplified equa-
tions, with a few deviations. According to Koester, and as 
shown in Equation 24, the nominal shear strength, VnK, is 
the sum of the steel and concrete contributions. The steel 
contribution is calculated as the shear yield strength of the 
flat portions of the hollows structural section (HSS) steel 
tubes used for the specimen. In Equation 25, dfl is the depth 
of the flat portion of steel tube. The concrete contribution is 
calculated as K0.0316 Ac fcβ ′, where βK is equal to 28 and 
is slightly larger than the value in Equation 19.

VnK = VsK + VcK (24)

VsK = 0.6Fy(2dfltw) (25)

VcK = 0.0316 KAc fc′β  (26)

VnF = VsF + VcF (27)

VsF = Aw
Fy

2 fP
2

3  (28)

VcF = Dc

2
tan + 4

Mpf

Dc fc
sin Dc fcθ θ ′

⎛
⎝⎜

⎞
⎠⎟  

(29)

Fukumoto and Morita (2005) proposed Equations 27 to 
29 to calculate the panel-zone shear strength of rectangu-
lar CFST, particularly those made from higher-strength 
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Table 7. Vexp//Vn Ratios for Specimens with P//P0 << 0.25 from Table 5

Specimen
Vexp  

(kips)
Vn  

(kips) Vn

Vexp
VnK

Vexp
VnJ

Vexp
VnF

Vexp

Koester (2000)

8.4A 233 214 1.09 1.02 1.22 1.12

8.6A 241 214 1.12 1.05 1.27 1.15

8.8A 237 214 1.11 1.03 1.25 1.13

8.4B 313 262 1.20 1.25 1.25 1.16

8.6B 313 263 1.19 1.25 1.25 1.16

8.8B 316 261 1.21 1.27 1.27 1.18

8.B-C 232 229 1.01 0.96 1.11 1.03

8.P-C 203 213 0.95 0.93 1.00 1.01

8.P2-C 227 229 0.99 0.94 1.09 1.01

CFT.2 571 540 1.06 1.02 1.16 1.01

CFT.3 598 542 1.10 1.07 1.22 1.06

CFT.4 610 543 1.12 1.08 1.24 1.07

Nishiyama et al. (2004) 

R1 566 371 1.52 1.27 1.56 1.08

R2 438 309 1.42 1.22 1.46 1.23

R3 632 458 1.38 1.21 1.36 1.01

R4 476 324 1.47 1.22 1.56 1.08

Fukumoto and Morita (2005)

SP1 337 253 1.34 1.19 1.41 1.15

SP2 428 316 1.35 1.33 1.31 1.14

SP3 554 438 1.27 1.21 1.20 0.96

Wu et al. (2005)

FSB-6 602 557 1.08 0.93 1.19 1.24

FSB-8 659 621 1.06 0.93 1.16 1.14

FSB-10 669 656 1.02 0.93 1.08 1.07

Ye et al. (2016) 

S1-1a 55 50 1.10 0.90 0.91 0.80

S1-1b 57 50 1.14 0.94 0.95 0.83

S1-2a 65 50 1.31 1.07 1.09 0.95

S1-2b 61 50 1.23 1.01 1.02 0.89

Average 1.19 1.09 1.21 1.06

Standard deviation 0.15 0.14 0.17 0.11

CoV 0.13 0.13 0.14 0.11
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Table 8. Vexp//Vn Ratios for Specimens with P//P0 >> 0.25 from Table 6

Specimen
Vexp  

(kips)
Vn  

(kips) Vn

Vexp
VnK

Vexp
VnJ

Vexp
VnF

Vexp

Ye et al. (2016) 

S1-3a 82 50 1.64 1.34 1.36 1.22

S1-3b 77 50 1.54 1.26 1.27 1.14

S1-4a 85 50 1.71 1.40 1.42 1.29

S1-4b 85 50 1.71 1.40 1.41 1.29

S2-2a 71 50 1.42 1.17 1.18 1.05

S2-2b 73 50 1.45 1.19 1.21 1.07

S3-1a 100 60 1.68 1.34 1.40 0.99

S3-1b 103 60 1.72 1.38 1.44 1.02

S4-1a 111 67 1.66 1.45 1.39 1.21

Average 1.62 1.33 1.34 1.14

Standard deviation 0.11 0.10 0.10 0.12

CoV 0.07 0.07 0.07 0.10

As shown by the ratios and the statistical evaluation (μ, σ, 
and CoV) at the bottom of the table, the Fukumoto and 
Morita (2005) approach seems to be the most accurate (on 
average), but this is incidental because the approach did 
not actually account for the effects of axial compression on 
concrete shear strength contribution. This can be explained 
further as follows. For the Ye et al. (2016) specimens, the 
shear span-to-depth ratio is extremely small (0.075), which 
leads to very high concrete contributions (VcF). This causes 

overestimation of shear strengths for low axial load cases in 
(shear strength ratios in the 0.80–0.95 range) and seemingly 
appropriate prediction for high axial load cases in Table 8 
(shear strength ratios in the 0.99–1.29 range). Both the AIJ 
(1987) and the Koester (2000) approaches are also conser-
vative with respect to the test results. The proposed simpli-
fied approach is the most conservative for higher axial load 
levels.


